Mechanisms of graphyne-enabled cholesterol extraction from protein clusters
نویسندگان
چکیده
The health risk associated with high cholesterol levels in the human body has motivated intensive efforts to lower them by using specialized drugs. However, little research has been performed utilizing nanomaterials to remove extra cholesterol from living tissues. Graphyne, a 2D lattice of spand sp-hybridized carbons similar to graphene, possesses great potential for cholesterol extraction from cell membranes due to its distinct porous structure and outstanding surface adhesion. Here we employ molecular dynamics simulations to explore pathways for cholesterol removal from protein clusters by using graphyne as a promising vehicle. We first demonstrate the adhesive strength between a single cholesterol molecule and different types of pristine graphyne, which provides the foundation for the graphyne–cholesterol interaction and the dynamic cholesterol removal process within a protein cluster. The sp-hybridized carbons in graphynes are potentially more reactive than the sp-hybridized carbons in graphene, which bestows graphynes with a remarkable affinity for cholesterol molecules. Simulation results show that graphynes with more sp-hybridized carbon linkers can extract more cholesterol molecules than those with fewer linkers. The movement rate of graphyne across the protein cluster also plays an important role in determining the amount of removed cholesterol molecules from the system of interest. The hybrid structure of graphyne with cholesterol molecules in its partial pores also possesses outstanding adhesive strength, showing better cholesterol removal performance than pristine graphyne. These findings open up a promising avenue to exploit the capability of graphyne for biomedical applications.
منابع مشابه
Oxygen adsorption on single layer graphyne: a DFT study.
Graphyne is a rising two-dimensional (2D) carbon allotrope with excellent electronic properties. In this paper, theoretical calculations were performed to study the corresponding electronic properties of the oxygenated graphyne. Atomic oxygen when bound to the carbon atom of graphyne forms a stable oxide, with a much larger binding energy compared to that on graphene. Owing to the oxygen adsorp...
متن کاملMechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification.
Two-dimensional carbon materials such as the 2D nanoweb-like graphyne membrane are promising as molecular sieves for energy and environmental applications. Based on the application of water purification - the removal of contaminants from wastewater and seawater - here we use molecular dynamics (MD) simulations to investigate the interplay between mechanical forces, filtration mechanisms, and ov...
متن کاملGraphyne-supported single Fe atom catalysts for CO oxidation.
Single atom catalysts (SACs) are highly desirable for the effort to maximize the efficiency of metal atom use. However, the synthesis of SACs is a major challenge that largely depends on finding an appropriate supporting substrate to achieve a well-defined and highly dispersed single atom. This work demonstrates that, based on the density functional theory (DFT) calculation, graphyne is a good ...
متن کاملCholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction.
Stabilization and maturation of synapses are important for development and function of the nervous system. Previous studies have implicated cholesterol-rich lipid microdomains in synapse stabilization, but the underlying mechanisms remain unclear. We found that cholesterol stabilizes clusters of synaptic acetylcholine receptors (AChRs) in denervated muscle in vivo and in nerve-muscle explants. ...
متن کاملAuthor's personal copy Mechanical properties of graphyne
Carbon nanotubes and graphene have paved the way for the next step in the evolution of carbon materials. Among the novel forms of carbon allotropes is graphyne – a two-dimensional lattice of sp–sp-hybridized carbon atoms similar to graphene for which recent progress has been made in synthesizing dehydrobenzoannulene precursors that form subunits of graphyne. Here, we characterize the mechanical...
متن کامل